Pure Mathematics 2

Solution Bank

Exercise 3B

1 **a**
$$\log_4 256 = 4$$

b
$$\log_3\left(\frac{1}{9}\right) = -2$$

$$\mathbf{c} \quad \log_{10} 1\ 000\ 000 = 6$$

d
$$\log_{11} 11 = 1$$

$$e \log_{0.2} 0.008 = 3$$

2 a
$$2^4 = 16$$

b
$$5^2 = 25$$

$$\mathbf{c} \quad 9^{\frac{1}{2}} = 3$$

d
$$5^{-1} = 0.2$$

$$e 10^5 = 100000$$

3 a If
$$\log_2 8 = x$$
 then $2^x = 8$, so $x = 3$

b If
$$\log_5 25 = x$$
 then $5^x = 25$, so $x = 2$

c If
$$\log_{10} 10\ 000\ 000 = x$$

then $10^x = 10\ 000\ 000$, so $x = 7$

d If
$$\log_{12} 12 = x$$
 then $12^x = 12$, so $x = 1$

e If
$$\log_3 729 = x$$
 then $3^x = 729$, so $x = 6$

f If
$$\log_{10} \sqrt{10} = x$$

then $10^x = \sqrt{10}$, so $x = \frac{1}{2}$
(Power $\frac{1}{2}$ means 'square root'.)

3 g If
$$\log_4(0.25) = x$$
 then $4^x = 0.25 = \frac{1}{4}$,
so $x = -1$ (Negative power means 'reciprocal'.)

h
$$\log_{0.25} 16 = x$$

 $\Rightarrow 0.25^x = 16$
 $\Rightarrow \left(\frac{1}{4}\right)^x = 16, \text{ so } x = -2$
 $\left(\left(\frac{1}{4}\right)^{-2} = \frac{1}{\left(\frac{1}{4}\right)^2} = \frac{1}{\left(\frac{1}{16}\right)} = 16\right)$

i
$$\log_a(a^{10}) = x$$

 $\Rightarrow a^x = a^{10}, \text{ so } x = 10$

$$\mathbf{j} \quad \log_{\left(\frac{2}{3}\right)} \left(\frac{9}{4}\right) = x$$

$$\Rightarrow \left(\frac{2}{3}\right)^x = \frac{9}{4} = \frac{1}{\left(\frac{2}{3}\right)^2} = \frac{1}{\left(\frac{4}{9}\right)} = \frac{9}{4}$$

$$\Rightarrow x = -2$$

4 a Using a power,
$$5^4 = x$$

So $x = 625$

b Using a power,
$$x^2 = 81$$

So $x = 9$
(The base of a logarithm cannot be negative, so $x = -9$ is not possible.)

c Using a power,
$$7^1 = x$$

So $x = 7$

d
$$2^3 = x - 1$$

 $x = 2^3 + 1$
 $= 9$

e
$$3^4 = 4x + 1$$

 $4x = 3^4 - 1$
 $x = \frac{1}{4}(3^4 - 1)$
= 20

Pure Mathematics 2

Solution Bank

4 f Using a power,

$$x^2 = 2x$$

$$x^2 - 2x = 0$$

$$x(x-2)=0$$

$$x = 2$$

(The base of a logarithm cannot be 0, so x = 0 is not possible)

5 a
$$\log_9 230 = 2.475$$

b
$$\log_5 33 = 2.173$$

$$c \log_{10} 1020 = 3.009$$

d
$$\log_e 3 = 1.099$$

6 a Let
$$\log_2 50 = x$$

$$2^{x} = 50$$

As
$$2^5 = 32$$
 and $2^6 = 64$,

$$32 < 2^x < 64$$

$$2^5 < 2^x < 2^6$$

So
$$5 < x < 6$$

b
$$\log_2 50 = 5.644$$

7 **a** i
$$\log_2 2 = 1$$

ii
$$\log_3 3 = 1$$

iii
$$\log_{17} 17 = 1$$

b Let
$$\log_a a = x$$

$$a^x = a$$

$$x = 1$$

$$\log_a a = 1$$

8 a i
$$\log_2 1 = 0$$

ii
$$\log_3 1 = 0$$

iii
$$\log_{17} 1 = 0$$

b Let
$$\log_a 1 = x$$

$$a^x = 1$$

$$x = 0$$

$$\log_a 1 = 0$$